Previous Projects
Molecular Engineering of High Performance Polymer Fibers
Funding: U. S. Army Advanced Concepts Technology Committee, DuPont, Hoechst-Celanese, Akzo Chemicals, Bend Research, Dow Chemical Company, National Institute of Standards and Technology
Past Students: Jennifer Rigney (MSE, 1994, now at PPG, Inc., Pittsburgh, PA), Marie-Christine G. Jones (Ph.D., 1995, now at Union Carbide, Bound Brook, NJ), Gary E. Spilman (Macromolecular Science, Ph.D. 1996, now at General Electric, Mt. Vernon, IN) T. Jiang (MSE, Ph.D.), Elizabeth Pingel (Macromolecular Science and Engineering, M.S.) Dan Lawrence (MSE, M. S., working full-time at Flint Ink, Ann Arbor, MI).
Post-doctoral scholars: Brendan Foran, Ph.D. 1995
We are developing new poymer materials for high performance lightweight structural applications. Jointly with Prof. Jeffrey S. Moore’s research group at the University of Illinois, we have synthesized a benzocyclobutene functionalized variant of comonomer for terephthalic acid (XTA) which can be crosslinked in the solid-state after processing. This makes it possible for us to systematically increase the lateral interactions between molecules, resulting in improved compressive strength and creep resistance without reducing the tensile strength or modulus. Current work involves efforts to further increase the crosslink density through multifunctionalized monomers and the preparation of XTA modified thermoplastics such as nylon 6,6 and meta-aramids MPDI (Nomex), and aromatic thermotropic poly(esters) HBA/HNA (Vectra). Processing routes include wet spinning, melt spinning, and dry-jet wet spinning.
This research has motivated the molecular simulations of oriented extended-chain polymers, and the development of analytical models of elasticity to describe the lateral interactions between molecules of finite molecular weight. We have also studied the influence of covalent bond crosslinking on compressive and lateral deformation behavior.
Most recently, we have been examining the utility of benzocyclobutene functionalization for increasing flame resistance, with the hypothesis that the BCB groups could lie dormant in the backbone of the polymer and then induce crosslinking at elevated temperature. Also, we have been working to develop molecules with dipole moments that could then be crosslinked in the presence of an electric field to lock-in the microstructural anisotropy necessary to obtain non-linear optical activity.
Pingel, E., L. J. Markoski, G. E. Spilman, B. J. Foran, T. Jiang and D. C. Martin, “Thermally crosslinkable thermoplastic PET-co-XTA copolyesters” Polymer, 40(1): 53-64, (1999).
Mather, P. T., K. P. Chaffee, A. RomoUribe, G. E. Spilman, T. Jiang and D. C. Martin, “Thermally crosslinkable thermotropic copolyesters: synthesis, characterization, and processing” Polymer, 38(24): 6009-6022, (1997).
Jones, M. C. G., E. LaraCurzio, A. Kopper and D. C. Martin, “The lateral deformation of cross-linkable PPXTA fibres” Journal of Materials Science, 32(11): 2855-2871, (1997).
Jones, M.-C. G. and D. C. Martin, “The Compressive Deformation of Crosslinkable PPXTA Fibers” Journal of Materials Science, 32(9): 2291, (1997).
Martin, D. C., J. S. Moore, L. J. Markoski, K. A. Walker and G. E. Spilman. Difunctional bitricyclodecatriene monomers, U. S. Patent No. 5552508, The Regents of the University of Michigan, (1996).
G. E. Spilman, T. Jiang, Q. Lu, and D. C. Martin, “Synthesis and Properties of Crosslinkable Phenylacetylene Donor-Acceptor Molecules”, in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials III, Materials Research Society Symposium Proceedings, v 413 1996. Materials Research Society, Pittsburgh, PA, 269-274, (1996).
Marie-Christine G. Jones and David C. Martin, “Micromechanisms of Kinking in Crosslinked Extended-Chain Polymers”, in Micromechanics of Advanced Materials, S. N. G. Chu, P. K. Liaw, R. J. Arsenault, K. Sadananda, K. S. Can, W. W. Gerberich, C. C. Chau, and T. M. Kung, eds., The Minerals, Metals, and Materials Society, Warrrendale, PA, 351-357, (1995).
David C. Martin, Patricia M. Wilson, Jun Liao, and Marie-Christine G. Jones, “Chain-end Defects in Extended-chain Polymer Solids”, MRS Bulletin, XX(9), 47-50, (1995).
Marie-Christine Jones and David C. Martin, “Molecular Stress and Strain in an Oriented Extended-Chain Polymer of Finite Molecular Length”, Macromolecules, 28, 6161-6174, (1995).
Tao Jiang, Jennifer Rigney, Marie-Christine G. Jones, Larry J. Markoski, Gary E. Spilman, Deborah F. Mielewski, and David C. Martin, “Processing and Characterization of Thermally Crosslinkable PPTA-co-XTA Copolymer Fibers”, Macromolecules, 28, 3301-3312, (1995).
T. D. Dang, C. S. Wang, W. E. Click, D. C. Martin, G. A. Deeter, J. S. Moore, D. M. Husband, and F. E. Arnold, “Polybenzobisthiazoles with Benzocyclobutene Crosslinking Sites for Improved Fiber Axial Compressive Strength”, Polymer Preprints, (1995).
Gary E. Spilman, Larry J. Markoski, Jeffrey S. Moore, and David C. Martin, “Difunctional Cyclobutabenzene Monomers”, United States Patent No. 5,418,312, issued to the Regents of the University of Michigan, May 23, 1995.
David C. Martin, Jeffrey S. Moore, Larry J. Markoski, and Kenneth A. Walker, “Cyclobutabenzene Monomers”, United States Patent No. 5,334,752, issued to the Regents of the University of Michigan, August 2, 1994.
Marie-Christine Jones, Tao Jiang, and David C. Martin, “Microstructural Characterization of Cross-linkable p-Phenylene Terephthalamide-Terephthalic Acid Derivative (PPTA-co-XTA) Copolymer Fibers”, Macromolecules, 27, 6507-6514, (1994).
Gary Spilman, Tao Jiang, Jeffrey S. Moore, and David C. Martin, “New Dimensions in Crosslinking High-performance Fibers”, Polymer Preprints, August, (1994).
Debbie Mielewski, David Bauer, and David C. Martin, “Free-radical Formation in Crosslinked Poly(aramids)”, Polymer Preprints, August, (1994).
Kenneth A. Walker, Larry J. Markoski, Gary A. Deeter, Gary E. Spilman, David C. Martin, and Jeffrey S. Moore, “Crosslinking Chemistry for High-Performance Polymer Networks”, Polymer, 35(23), 5012-5017, (1994).
Jennifer Rigney, Monica Little, and David C. Martin, “Swelling Studies of Crosslinked PPTA-co-XTA Copolymers”, Journal of Polymer Science: Polymer Physics Edition, 32, 1017-1021, (1994).
Debbie Mielewski, David C. Martin, and David Bauer, “Free Radical Formation in Crosslinkable Poly(paraphenylene terephthalamide) Copolymers”, Polymer Preprints, August, 1994.
Gary Spilman, Tao Jiang, and David C. Martin, “New Dimensions in Crosslinking High Performance Polymers”, Polymer Preprints, August 1994.
Gary E. Spilman, Larry J. Markoski, Kenneth A. Walker, Gary A. Deeter, David C. Martin, and Jeffrey S. Moore, “Copolymers of Poly(para-phenylene terephthalamide) Containing a Thermally-Activated Cross-linking Agent”, Polymer Materials Science and Engineering, 68, 139-140, (1993).
Larry J. Markoski, Kenneth A. Walker, Gary A. Deeter, Gary E. Spilman, David C. Martin, and Jeffrey S. Moore, “Cross-Linkable Copolymers of Poly(para-phenylene terephthalamide)”, Chemistry of Materials, 5, 248-250, (1993).
David C. Martin, Tao Jiang, Jennifer Rigney, Marie-Christine Jones, Larry Markoski, and Jeffrey S. Moore, “Processing and Characterization of PPTA-co-XTA Copolymer Fibers”, Polymer Preprints, 34(2), 720-721, 1993.
David C. Martin and Edwin L. Thomas, “Ultrastructure of Poly(p-phenylenebenzobisoxazole) Fibers”, Macromolecules, 24, 2450-2460, 1991.
David C. Martin and Edwin L. Thomas, “Grain Boundaries in Extended-Chain Polymers: Theory and Experiment”, Philosophical Magazine A, 64(4), 903-922, 1991.
David C. Martin, “Direct Imaging of Deformation and Disorder in Extended-Chain Polymer Fibers”, Report WL-TR-91-4011, Materials Directorate, Wright Laboratory, Air Force Systems Command, Wright Patterson Air Force Base, Ohio, 1991.